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The paper considers macroscopic behavior of a Fermi–Dirac particle system. We prove
the L1-compactness of velocity averages of weak solutions of the Boltzmann equation
for Fermi–Dirac particles in a periodic box with the collision kernel b(cos θ )|v − v∗|γ ,
which corresponds to very soft potentials: −5 < γ ≤ −3 with a weak angular cutoff:∫ π

0 b(cos θ ) sin3 θdθ < ∞. Our proof for the averaging compactness is based on the
entropy inequality, Hausdorff–Young inequality, the L∞-bounds of the solutions, and
a specific property of the value-range of the exponent γ . Once such an averaging
compactness is proven, the proof of the existence of weak solutions will be relatively
easy.

KEY WORDS: Boltzmann equation; Fermi–Dirac particles; coulomb interaction;
weak angular cutoff; averaging compactness.

1. INTRODUCTION

The Boltzmann equation under consideration for one species Fermi–Dirac particles
is given by (after normalizing a quantum parameter)

∂t f + v · ∇x f = QB( f ), (t, x, v) ∈ [0,∞) × T3 × R3 (1)

QB( f ) =
∫

R3×S2

B(v − v∗, σ )�F( f )dσdv∗ (2)

�F( f ) = f ′ f ′
∗(1 − f )(1 − f∗) − f f∗(1 − f ′)(1 − f ′

∗) (3)
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with initial and spatial periodic boundary conditions: f |t=0 = f0,

T3 =
3∏

i=1

[−Ti/2, Ti/2], 0 < Ti < ∞, i = 1, 2, 3;

f0, f are periodic in x = (x1, x2, x3) with the period T = (T1, T2, T3)
and f satisfies the L∞-bounds (due to the Pauli’s exclusion principle):

0 ≤ f (t, x, v) ≤ 1, (t, x, v) ∈ [0,∞) × R3 × R3. (4)

Physical background and derivation of such quantum Boltzmann models can be
found in Chap. 17 of Chapman and Cowling,(15) Nordheim,(25) and Uehling and
Uhlenbeck.(27) In Eqs. (1)–(3) the solution f is a density of the number of particles
at time t ∈ [0,∞), position x ∈ T3 with velocity v ∈ R3, and f∗, f ′, f ′

∗ stand for
the same function f with different velocity variables v∗, v′, v′

∗ respectively:

f∗ = f (t, x, v∗), f ′ = f (t, x, v′), f ′
∗ = f (t, x, v′

∗)

where v, v∗, and v′, v′
∗ are velocities of two particles before and after their collision

which conserves the momentum and kinetic energy:

v′ = v + v∗
2

+ |v − v∗|
2

σ, v′
∗ = v + v∗

2
− |v − v∗|

2
σ, σ ∈ S2. (5)

For a spherical symmetric two-body interaction potential, the (quantum) collision
kernel B(v − v∗, σ ) (or the scattering cross section B(v − v∗, σ )/|v − v∗|) is a
non-negative Borel function of |v − v∗| and cos θ ≡ n · σ only(6,13−15):

B(v − v∗, σ ) := B(|v − v∗|, cos θ ), σ ∈ S2, n = (v − v∗)/|v − v∗|.
Under integrable or certain locally integrable assumptions on B, the global

existence of Eqs. (1)–(3) in the mild or distributional sense for the whole space
domain R3

x have been proven by Dolbeault(18) and Lions(21) (and their results also
hold true for the spatial periodic box T3). These results were then extended by
Alexandre(2) to weak solutions to the case where the kernel B takes the following
form (with our notation)

B(v − v∗, σ ) = const.|v − v∗|γ (cos(θ/2))(3+γ )/2

(sin(θ/2))(5−γ )/2
, −3 < γ < 1

which is a modification of a classical physical model: the inverse power law of
molecular interaction potentials (see e.g. Cercignani(13)). The equality sign “=”
in the above expression of B can be relaxed to the inequality sign “≤” and in
this sense the modified part is only the factor (cos(θ/2))(3+γ )/2 which (thanks to
the condition γ > −3) comes from the use of Carleman’s representation of the
Boltzmann collision integrals(2, 11, 30) (see also Ref. 29, Chap. 2]. For the spatially
homogeneous solutions (i.e. solutions that are independent of x), some basic
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results on equilibrium states and long-time behavior of solutions have been also
obtained in (for instance) Refs. 22 and 23 under the usual assumptions of locally
integrable cutoff on B.

In this paper we are mainly concerned with the nonlocally integrable kernel:
We assume that B satisfy (recall that B is non-negative)

B(v − v∗, σ ) ≤ |v − v∗|γ b(cos θ ), −5 < γ ≤ −3 (6)

with a weak angular cutoff:

A0 := 2π

∫ π

0
b(cos θ ) sin3 θ dθ < ∞. (7)

In physics, an interesting case is the Coulomb interaction model for which the
collision kernel B without cutoff is given by γ = −3 and the Rutherford’s formula
(see Chap. 21 of Bohm(7) and Chap. 1 of Villani(28,29)):

B(v − v∗, σ ) = const.|v − v∗|−3b(cos θ ), b(cos θ ) = 1

sin4(θ/2)
(8)

which, as pointed out by Bohm (Ref. 7, p. 579), “has the unique property that the
exact classical theory, the exact quantum theory, and the Born approximation in the
quantum theory all yield the same scattering cross sections.” Note that the angular
cutoff condition (7) does not cover yet the Coulomb model (8). In fact it is a hard
problem to establish a weak form of Eqs. (1)–(3) for (8) without angular cutoff.
But the cutoff condition (7) preserves the “main part” of the angular singularity in
(8) in the sense that if we choose for instance b(cos θ ) = sin−4(θ/2) 1{ε≤θ≤π}, then∫ π

0 b(cos θ ) sin3 θdθ ≤ 16 log(π/ε) which changes so slowly with 0 < ε 	 1 that
in practice this truncation is not very sensitive to the actual value of ε (see Ref. 7,
p. 521).

1.1. About Weak Solutions

To solve Eqs. (1)–(3) for very soft potentials (i.e. γ ≤ −3) with or without
angular cutoff, certain weak forms of the equation are necessary as shown in the
study of classical Boltzmann equation (see e.g. Refs. 5, 20, 28). As usual, one
starts by solving Eqs. (1)–(3) in the mild form (under certain cutoff on B):

f �(t, x, v) = f0(x, v) +
∫ t

0
QB( f )�(τ, x, v)dτ (9)

where for any function g, g�(t, x, v) = g(t, x + tv, v). Then applying (9) and the
following identity for x-periodic function g∫

T3

g�(t, x, v)dx =
∫

T3

g(t, x, v)dx ∀ (t, v) ∈ [0,∞) × R3
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the Eqs. (1)–(3) can be written as the following weak form∫
T3×R3

f (t, x, v)ϕ(t, x, v)dvdx =
∫

T3×R3

f0(x, v)ϕ(0, x, v)dvdx

+
∫ t

0
dτ

∫
T3×R3

f (∂τϕ + v · ∇xϕ)dvdx

+ 1

4

∫ t

0
dτ

∫
T3×R3

Q B( f | �ϕ)dvdx ∀ t ≥ 0 (10)

where ϕ(t, x, v) are smooth functions periodic in x with period T, �ϕ denotes the
collisional difference of velocity functions v �→ ϕ(t, x, v):

�ϕ = �ϕ(v, v∗, v′, v′
∗) := ϕ(v) + ϕ(v∗) − ϕ(v′) − ϕ(v′

∗), (11)

and

Q B( f | �ϕ)(t, x, v) =
∫

R3×S2

B(v − v∗, σ )�ϕ �F( f )dσdv∗. (12)

The problem of rigorous validity of the weak form (10) is focused on finding a
suitable cutoff condition (as weak as possible) on B such that the collision integral
(12) is finite for a large class of smooth functions ϕ. In the case of classical
Boltzmann equation, the angular cutoff condition (7) for the Coulomb model (8)
or generally for the very soft potential model (6) was already used in Villani(28)

(see also Ref. 29, Chap. 2) where the global existence of weak solutions was proven
by using the entropy control (the Boltzmann H -theorem). Such weak solutions are
then also called H -solutions(2,28). For the present Boltzmann–Fermi–Dirac model
(1)–(3), this consideration on entropy control is more important and seems the only
choice because the “mixing” effect, i.e. the prime ( ′ ) in f ′ f ′

∗ and (1 − f ′)(1 −
f ′
∗), cannot disappear simultaneously with any change of velocity variables and

thus the following classical relation (e.g. for the original Boltzmann collision
integral)

∫
R3×R3×S2

B(v − v∗, σ )( f ′ f ′
∗ − f f∗)�ϕ dσdvdv∗

= −2
∫

R3×R3

f f∗

(∫
S2

B(v − v∗, σ )�ϕ dσ

)
dvdv∗,

which preserves the “main part” of the angular singularity as shown above for (8),
could not apply to the Fermi–Dirac model. While the entropy method still works; it
combines with the L∞-bounds (4) and the “very softness” −5 < γ ≤ −3 enables
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us also to avoid dealing with the problem of the boundedness of the integrals like∫
T3

(∫
R3

f (t, x, v)(1 + |v|2)dv

)2

dx or
∫

T3×R3

f (t, x, v)|v|2+δdvdx, δ > 0.

(See Lemma 2 in Section 2.)
Before introducing our weak solutions of the Eqs. (1)–(3), let us first show

the role of entropy control in dealing with the singularity of collision integrals.
Recall that the entropy functional S( f ) for the Boltzmann–Fermi–Dirac model is
given by

S( f ) =
∫

T3×R3

(−(1 − f ) log(1 − f ) − f log f ) dvdx

for measurable functions f satisfying (4) and f ∈ L1
2(T3 × R3), where

L1
s (T3 × R3) =

{
f

∣∣∣∣ ‖ f ‖L1
s

:=
∫

T3×R3

| f (x, v)|(1 + |v|2)s/2dvdx < ∞
}
.

Since 0 ≤ f ≤ 1 implies that

|(1 − f ) log(1 − f )| + | f log f | ≤ f (1 + |v|2) + e−|v|2/2

the entropy S( f ) is bounded:

0 ≤ S( f ) ≤ ‖ f ‖L1
2
+ C0|T3| (13)

where |T3| = T1T2T3 denotes the volume of the box T3. Classical derivation shows
at least formally that a solution f (t) = f (t, ·, ·) of Eqs. (1)–(3) with initial datum
f |t=0 = f0 satisfies the entropy identity

S( f (t)) = S( f0) +
∫ t

0
dτ

∫
T3

D( f )(τ, x)dx, t ≥ 0. (14)

In the present paper we shall use only the entropy inequality

S( f (t)) ≥ S( f0) +
∫ t

0
dτ

∫
T3

D( f )(τ, x)dx, t ≥ 0. (15)

Here

D( f ) = 1

4

∫
R6×S2

B(v − v∗, σ )( f )dσdvdv∗ (entropy dissipation),

( f ) = ( f ′ f ′
∗(1− f )(1− f∗)− f f∗(1− f ′)(1 − f ′

∗)) log

(
f ′ f ′

∗(1− f )(1− f∗)

f f∗(1− f ′)(1− f ′∗)

)
,

and we define

(a − b) log
(a

b

)
= +∞ for a > 0 = b or a = 0 < b ; = 0 for a = b = 0.
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To establish weak solutions we use the following test function space C1
b,T([0,∞) ×

R3 × R3) defined by

ϕ ∈ C1
b,T([0,∞) × R3 × R3) ⇐⇒ ϕ ∈ C1([0,∞) × R3 × R3),

sup
(t,x,v)∈[0,∞)×T3×R3

(|ϕ| + |∂tϕ| + |∇xϕ| + |∇vϕ|)(t, x, v) < ∞,

and the function x �→ ϕ(t, x, v) is periodic with period T = (T1, T2, T3).
Now suppose that f is a solution of Eqs. (1)–(3) (in the mild sense (9)

for instance) satisfying the entropy inequality (15) and conserving the mass,
momentum and energy. Then

‖ f (t)‖L1
2
= ‖ f0‖L1

2
< ∞, S( f (t)) ≤ ‖ f0‖L1

2
+ C0|T3|, t ≥ 0.

Let ϕ ∈ C1
b,T([0,∞) × R3 × R3), 0 ≤ t1 < t2 < ∞. By elementary inequality

|�ϕ| ≤ √
2 ‖∇ϕ‖|v − v∗| sin θ (see Lemma 1 in Section 2) we have∫ t2

t1

dt

∫
T3×R6×S2

B |�ϕ| |�F( f )|dσdv∗dvdx

≤
√

2 ‖∇ϕ‖
∫ t2

t1

dt

∫
T3×R6×S2

B |v − v∗| sin θ |�F( f )|dσdv∗dvdx . (16)

We show that∫ t2

t1

dt

∫
T3×R6×S2

B(v − v∗, σ )|v − v∗| sin θ |�F( f )|dσdv∗dvdx

≤
(

C0 A0 (t2 − t1)

5 − |γ | ‖ f0‖L1
2

)1/2 (∫ t2

t1

∫
T3

D( f )(t, x)dxdt

)1/2

. (17)

In particular (using the entropy inequality (15)) for all 0 < T < ∞∫ T

0
dt

∫
T3×R6×S2

B(v − v∗, σ )|v − v∗| sin θ |�F( f )|dσdv∗dvdx

≤
(

C0 A0 T

5 − |γ | ‖ f0‖L1
2

)1/2

[S( f (T )) − S( f0)]1/2 . (18)

Here and below C0 always denotes positive absolute constants.
To do this we consider the decomposition

�F( f ) = �1( f )�2( f )

where

�1( f ) = √
f ′ f ′∗(1 − f )(1 − f∗) + √

f f∗(1 − f ′)(1 − f ′∗),

�2( f ) = √
f ′ f ′∗(1 − f )(1 − f∗) − √

f f∗(1 − f ′)(1 − f ′∗).
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By Cauchy–Schwarz inequality we have∫ t2

t1

dt

∫
T3×R6×S2

B |v − v∗| sin θ |�F( f )|dσdv∗dvdx

≤
(∫ t2

t1

dt

∫
T3×R6×S2

B |v − v∗|2 sin2 θ |�1( f )|2dσdv∗dvdx

)1/2

×
(∫ t2

t1

dt

∫
T3×R6×S2

B |�2( f )|2dσdv∗dvdx

)1/2

.

For the first factor in the right hand side of this inequality we use the following
estimate (see Lemma 2 below)∫

R3×R3

f (t, x, v) f (t, x, v∗)

|v − v∗||γ |−2
dvdv∗ ≤ C0

5 − |γ |
∫

R3

f (t, x, v)|v|5−|γ |dv

with the condition 0 < 5 − |γ | ≤ 2 and note that |�1( f )|2 ≤ 2( f ′ f ′
∗ + f f∗) to

obtain∫ t2

t1

dt

∫
T3×R6×S2

B |v − v∗|2 sin2 θ |�1( f )|2dσdv∗dvdx

≤ 4
∫ t2

t1

dt

∫
T3×R6×S2

B |v − v∗|2 sin2 θ f f∗dσdv∗dvdx

≤ 4A0

∫ t2

t1

dt

∫
T3×R3×R3

f f∗
|v − v∗||γ |−2

dv∗dvdx ≤ C0 A0(t2 − t1)

5 − |γ | ‖ f0‖L1
2
. (19)

For the second factor we use the elementary inequality(28)

(
√

a −
√

b)2 ≤ 1

4
(a − b) log(

a

b
), 0 ≤ a, b < ∞

to deduce |�2( f )|2 ≤ 1
4( f ) and thus∫ t2

t1

dt

∫
T3×R6×S2

B |�2( f )|2dσdv∗dvdx ≤
∫ t2

t1

dt

∫
T3

D( f )(t, x)dx . (20)

This gives (17).
Inequality (17) (therefore (18)) holds rigorously at leat for mild solutions

f n of Eqs. (1)–(3) with strong cutoff kernels Bn . And one can construct Bn

such that Bn ↗ B (n → ∞) and f n satisfy the conservation of mass, momen-
tum and energy and satisfy the entropy identity (14) with the entropy dissi-
pation Dn( f n) corresponding to Bn . By taking weak limit, the inequality (18)
holds also for a limiting function f which is expected to be a weak solution of
Eqs. (1)–(3) in the following sense:
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1.2. Definition of Weak Solutions of Eqs. (1)–(3)

Let B satisfy (6) and (7). Let f0 be measurable and x-periodic function (with
the period T) satisfying 0 ≤ f0 ≤ 1 on R3 × R3 and f0 ∈ L1

2(T3 × R3). Let f be
a measurable and x-periodic function (with the period T) on [0,∞) × R3 × R3

and satisfy the L∞-bounds (4). We say that f is a weak solution to the Eqs. (1)–(3)
with the initial datum f0 if f satisfies the following (i)–(ii):

(i) For any t ≥ 0, (x, v) �→ f (t, x, v) is measurable on R3 × R3, f |t=0 = f0,
and supt≥0 ‖ f (t)‖L1

2
< ∞.

(ii) For any ϕ ∈ C1
b,T([0,∞) × R3 × R3) and for any 0 < T < ∞,∫ T

0
dt

∫
T3×R6×S2

B(v − v∗, σ )|�ϕ||�F( f )|dσdv∗dvdx < ∞ (21)

and ( f, ϕ) satisfies the equation (10).
Note that the integrability condition (21) can be obtained by the inequalities

(16) and (18) provided that f satisfies (18).

1.3. Conservation of Energy

It is worth noting that the very soft potentials (−5 < γ ≤ −3) possess an
advantage that if the angular function b(·) satisfies a stronger cutoff condition

A∗
0 := 2π

∫ π

0
b(cos θ ) sin2 θdθ < ∞

then every weak solution to Eqs. (1)–(3) conserves the energy. (The conserva-
tion of the mass is obvious and the conservation of the momentum follows
from the following argument.) To show this we choose a family {ϕε} of test
functions

ϕε(v) = 1

ε
(1 − e−ε|v−v0|2 ), ε > 0, v0 ∈ R3

and compute ∂2
vi v j

ϕε(v) = −4εe−ε|v−v0|2 (v − v0)i (v − v0) j + 2e−ε|v−v0|2δi j which

implies |∂2
vi v j

ϕε(v)| ≤ 4e−ε|v−v0|2 (1 + ε|v − v0|2) ≤ 4 and so by Lemma 1 (see
Section 2) we have

|�ϕε| ≤ 6|v − v∗|2 sin θ ∀ ε > 0.

Then applying inequality |�F( f )| ≤ f ′ f ′
∗ + f f∗ with the same argument as in
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(19) we obtain the integrability:∫ t

0
dτ

∫
T3×R6×S2

B |v − v∗|2 sin θ |�F( f )|dσdv∗dvdx

≤ 2
∫ t

0
dτ

∫
T3×R6×S2

B |v − v∗|2 sin θ f f∗dσdv∗dvdx

≤ C0 A∗
0 t

5 − |γ | sup
τ∈[0,t]

‖ f (τ )‖L1
2
< ∞ ∀ 0 < t < ∞.

On the other hand we have 0 ≤ ϕε(v) ≤ |v − v0|2, lim
ε→0+

ϕε(v) = |v − v0|2, and

thus lim
ε→0+

|�ϕε| = 0. Therefore it follows from dominated convergence theorem

and the weak form (10) that for all 0 ≤ t < ∞

lim
ε→0+

∫ t

0
dτ

∫
T3×R3

Q B( f | �ϕε)dvdx = 0,

∫
T3×R3

f (t, x, v)|v − v0|2dvdx =
∫

T3×R3

f0(x, v)|v − v0|2dvdx .

This proves the conservation of energy by choosing v0 = 0. Also, since v0 is
arbitrary, the conservation of momentum follows.

1.4. Velocity-Averaging Compactness

The main purpose of this paper is to prove the L1-compactness of velocity
averages (for any given � ∈ L∞([0,∞) × T3 × R3))

〈 f �〉(t, x) =
∫

R3

f (t, x, v)�(t, x, v)dv (22)

of weak or approximate solutions f of Eqs. (1)–(3). As is well-known, the com-
pactness of velocity averages is one of several basic tools in dealing with various
convergence or stability of solutions or approximate solutions of kinetic equations
(see e.g. Refs. 8–10, 16, 17, 19, 29); see also a recent application of the averaging
compactness in Ref. 12 where an appendix may be very helpful to the reader), and
it is different from some other tools (e.g. estimates of entropy dissipation, strong
compactness of the Boltzmann collision gain operators, cancellation lemma, etc.,
see the review in Ref. 29) that the velocity-averaging compactness depends com-
pletely on the related kinetic equation. For the present Boltzmann-Fermi–Dirac
model, since for very soft potentials (−5 < γ ≤ −3) this dependence on the equa-
tion (1) is only through the weak form (10) and the angular cutoff condition (7)
on the kernel B is very weak, the known methods for proving the averaging com-
pactness of classical, mild or renormalized solutions of kinetic equations have
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to be improved for the present type of weak solutions. Once such an averaging
compactness is established, the proof of the existence of weak solutions of Eqs.
(1)–(3) will be relatively easy.(24)

1.5. About Full Compactness

Although our main result is only concerned with averaging compactness, a
very important question is to ask about full compactness (in the whole variables
(t, x, v) or at least in (x, v)) of weak or approximate solutions. Once the averaging
compactness is established, the tools used in Refs. 3 and 4 (see also Ref. 2) maybe
adapt to the Boltzmann–Fermi–Dirac model for very soft potentials . For instance,
if in addition to (6)–(7) we assume that B also satisfies

B(v − v∗, σ ) ≥ B0(v − v∗, σ ) := (
1 + |v − v∗||γ |)−1

b(cos θ )1{0≤θ≤π/2}

and let D( f ), D0( f ) be defined above corresponding to B and B0 respectively,
then D( f ) ≥ D0( f ) and the cancellation argument in Ref. 3 (or the equality (2.2)
in Section 2 below) can be used to B0 to obtain the following inequality: There is
an absolute constant C0 > 0 such that for all f ∈ L1(R3) with 0 ≤ f (v) ≤ 1,∫

R6×S2

B0 f ( f ′
∗ − f∗)dσdv∗dv ≤ C0 A0

∫
R3

f (v)dv.

This inequality holds at least when b(t) is integrable. Then following the proof of
Theorem 1 in Ref. 3 (using a monotone approximation to b(t) ...) we can prove
that (for instance)

1

4

∫
R6×S2

B0 f (1 − f )( f∗ − f ′
∗)2dσdv∗dv ≤ D0( f ) + C0 A0

∫
R3

f (v)dv, (23)

1

4

∫
R6×S2

B0| f − f ′|| f∗ − f ′
∗|dσdv∗dv ≤ D0( f ) + C0 A0

∫
R3

f (v)dv. (24)

Since f (1 − f ) ≥ 0, the inequality (23) seems the most applicable for proving
the full compactness of weak solutions { f n} of Eqs. (1)–(3) because in view of
Ref. 3 one needs only to prove that the averages (t, x) �→ ∫

R3 f n(1 − f n)dv have
a certain positive pointwise lower bound. But this is not easy (even use the fact
that f n are solutions) because f �→ f (1 − f ) is concave, not convex. It is also not
clear how to deal with the mixing term | f − f ′|| f∗ − f ′

∗| in the inequality (24).
Note that the left hand sides of (23) and (24) are derived from some detailed ones.
We do not know whether these detailed versions can provide the required lower
bound. . . .

Before ending this section we need to mention some facts about changes of
variables in integration. Recall that the velocities v′, v′

∗ can be also represented by
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the following ω-representation:

v′ = v − ((v − v∗) · ω)ω, v′
∗ = v∗ + ((v − v∗) · ω)ω. (25)

Accordingly in many articles the collision kernel is written as

B̃(v − v∗, ω) := B̃(|v − v∗|, |n · ω|), ω ∈ S2, n = (v − v∗)/|v − v∗|.
The relation between B(v − v∗, σ ) and B̃(v − v∗, ω) is given by (see e.g. Ref. 29,
Chap. 1)

B̃(|v − v∗|, |n · ω|) = 2|n · ω|B(|v − v∗|, n · σ ), |n · ω| =
√

1 − n · σ

2

with n = (v − v∗)/|v − v∗|. It is easily shown that for all non-negative measurable
function �(v, v∗) on R3 × R3 we have∫

S2

B(v − v∗, σ )�(v′, v′
∗)dσ =

∫
S2

B̃(v − v∗, ω)�(v′, v′
∗)dω (26)

where (v′, v′
∗) in the right hand side (resp. the left hand side) is given by the

ω-representation (25) (resp. σ -representation (5)). Note that the conservation of
kinetic energy |v′|2 + |v′

∗|2 = |v|2 + |v∗|2 says that for any fixed ω ∈ S2 the map-
ping (v, v∗) �→ (v′, v′

∗) (given by the ω- representation (25)) is a linear orthogonal
transform on R3 × R3. It is this linear property and the relation (26) that enable
one to deduce various identities about collision integrals with σ -representation. In
this paper unless otherwise stated we always use the σ -representation (5).

2. SOME LEMMAS

In this section we collect and prove some lemmas for proving our main results
which are given in the next section.

Lemma 1. Let �ϕ = �ϕ(v, v∗, v′, v′
∗) be defined in (11). If ϕ ∈ C1

b (R3) then

|�ϕ| ≤
√

2 ‖∇ϕ‖ |v − v∗| sin θ, (v, v∗, σ ) ∈ R3 × R3 × S2.

If ϕ ∈ C2
b (R3), then

|�ϕ| ≤ 1

2
‖Hϕ‖|v − v∗|2 sin θ.

Here ‖∇ϕ‖ = sup
v∈R3

(∑3
i=1 |∂vi ϕ(v)|2

)1/2
, ‖Hϕ‖ = sup

v∈R3

(∑
i, j |∂2

vi v j
ϕ(v)|2

)1/2
.
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Proof. By identities

|v′ − v| = |v′
∗ − v∗| = |v − v∗| sin(θ/2),

|v′ − v∗| = |v′
∗ − v| = |v − v∗| cos(θ/2),

�ϕ = (ϕ − ϕ′) + (ϕ∗ − ϕ′
∗) = (ϕ − ϕ′

∗) + (ϕ∗ − ϕ′)

we obtain the first estimate:

|�ϕ| ≤ 2‖∇ϕ‖|v − v∗| min{sin(θ/2), cos(θ/2)} ≤
√

2 ‖∇ϕ‖|v − v∗| sin θ.

For the second estimate we compute (using v∗ − v′
∗ = v′ − v)

�ϕ = [ϕ(v∗) − ϕ(v′
∗)] − [ϕ(v′) − ϕ(v)]

=
∫ 1

0
[∇ϕ(v′

∗ + t(v∗ − v′
∗)) − ∇ϕ(v + t(v′ − v))] · (v′ − v)dt

=
∫ 1

0

∫ 1

0
(v′

∗ − v)T Hϕ(v + t(v′ − v) + τ (v′
∗ − v))(v′ − v)dτdt

where Hϕ(v) = (∂2
vi v j

ϕ(v))3×3denotes the Hessian matrix of ϕ. This gives

|�ϕ| ≤ ‖Hϕ‖ |v′
∗ − v||v′ − v| = 1

2‖Hϕ‖ |v − v∗|2 sin θ. �

Lemma 2. Let f, g be measurable functions on R3 satisfying 0 ≤ f, g ≤ 1 on
R3, and let α < 3 be a constant. Then∫

R3×R3

f (v)g(v∗)

|v − v∗|α dvdv∗ ≤ 25−απ

3 − α

∫
R3

( f (v) + g(v))|v|3−αdv.

Proof. Using the inequality1 ≤ 1{|v−v∗|≤2|v|} + 1{|v−v∗|≤2|v∗|} we compute∫
R3×R3

f (v)g(v∗)

|v − v∗|α dvdv∗ ≤
∫

R3

f (v)

(∫
R3

1

|v − v∗|α 1{|v−v∗|≤2|v|}dv∗

)
dv

+
∫

R3

g(v∗)

(∫
R3

1

|v − v∗|α 1{|v−v∗|≤2|v∗|}dv

)
dv∗

= 25−απ

3 − α

∫
R3

( f (v) + g(v))|v|3−αdv. �

Lemma 3. Let b(t),�(r ) be non-negative Borel functions on t ∈ [−1, 1] and
r ∈ [0,∞) respectively, let f (v) be a non-negative measurable function on R3.
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Then with n = (v − v∗)/|v − v∗| we have, for all v ∈ R3,∫
R3×S2

b(n · σ )�(|v − v∗|) f (v′)dσdv∗

= 2π

∫ π

0

b(cos θ ) sin θ

sin3(θ/2)

{∫
R3

�

( |v − v∗|
sin(θ/2)

)
f (v∗)dv∗

}
dθ, (28)

∫
R3×S2

b(n · σ )�(|v − v∗|) f (v′
∗)dσdv∗

= 2π

∫ π

0

b(cos θ ) sin θ

cos3(θ/2)

{∫
R3

�

( |v − v∗|
cos(θ/2)

)
f (v∗)dv∗

}
dθ. (29)

Proof. Let b̃(τ ) be defined on τ ∈ [0, 1] by

b̃(cos θ ) = 2 cos θ b(− cos 2θ ), θ ∈ [0, π/2]. (30)

Then it has been proven in Ref. 22 that (with the ω-representation (25))∫
R3×S2

b̃(|n · ω|)�(|v − v∗|) f (v′)dωdv∗

= 4π

∫ π/2

0

sin θ b̃(cos θ )

cos3 θ

{∫
R3

�

( |v − v∗|
cos θ

)
f (v∗)dv∗

}
dθ,∫

R3×S2

b̃(|n · ω|)�(|v − v∗|) f (v′
∗)dωdv∗

= 4π

∫ π/2

0

sin θ b̃(cos θ )

sin3 θ

{∫
R3

�

( |v − v∗|
sin θ

)
f (v∗)dv∗

}
dθ.

Since, by (24),∫
R3×S2

b(n · σ )�(|v − v∗|)( f (v′), f (v′
∗))dσdv∗

=
∫

R3×S2

b̃(|n · ω|)�(|v − v∗|)( f (v′), f (v′
∗))dωdv∗,

the equalities (28)–(29) follow from the relation (30). �

Remark. A detailed proof of Lemma 3 (for (29)) can be also found in Ref. 3
(Cancellation Lemma) under the condition that function b(t) is supported on
[0, 1], which is not a restriction when connecting the Boltzmann type equations
because as explained in Ref. 3 that in such equations one can replace B(v − v∗, σ )
with [B(v − v∗, σ ) + B(v − v∗,−σ )]1{n·σ≥0}.
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Lemma 4. Let B(v − v∗, σ ) satisfy the conditions (6) − (7) and let f be mea-
surable function on R3 satisfying 0 ≤ f ≤ 1. Then∫

R3×S2

B(v − v∗, σ ) sin2 θ |v − v∗||γ |+2 f (v′) f (v′
∗)dσdv∗

≤ 25/2 A0(1 + |v|2)
∫

R3

(1 + |v∗|2) f (v∗)dv∗, v ∈ R3.

Proof. By assumption on B we have∫
R3×S2

B(v − v∗, σ ) sin2 θ |v − v∗||γ |+2 f (v′) f (v′
∗)dσ

≤
∫

R3×S2

b(cos θ ) sin2 θ |v − v∗|2 f (v′) f (v′
∗)dσdv∗.

For dealing with singularity in θ we consider a decomposition

b(cos θ ) sin2 θ = b1(cos θ ) + b2(cos θ ),

b1(cos θ ) = b(cos θ ) sin2 θ1{π/2<θ≤π}, b2(cos θ ) = b(cos θ ) sin2 θ1{0≤θ≤π/2}.

Then applying Lemma 3 to the functions b1(t), b2(t) and �(r ) = r2 we compute
with the assumption 0 ≤ f ≤ 1 that∫

R3×S2

b(cos θ ) sin2 θ |v − v∗|2 f (v′) f (v′
∗)dσdv∗

≤
∫

R3×S2

b1(cos θ ) |v − v∗|2 f (v′)dσdv∗ +
∫

R3×S2

b2(cos θ ) |v − v∗|2 f (v′
∗)dσdv∗

= 2π

(∫ π

π/2

b(cos θ ) sin3 θ

sin5(θ/2)
dθ +

∫ π/2

0

b(cos θ ) sin3 θ

cos5(θ/2)
dθ

)∫
R3

|v − v∗|2 f (v∗)dv∗

≤ 25/2 A0(1 + |v|2)
∫

R3

(1 + |v∗|2) f (v∗)dv∗. �

Lemma 5. For all 0 < R, λ < ∞ and all (s, x) ∈ R1 × R3,∫
|v|≤R

λ dv

λ + (s + x · v)2
≤ 4π2 R3λ1/2

(λ + s2 + R2|x |2)1/2
. (31)

Proof. By scaling changes s̃ = s/
√

λ , x̃ = Rx/
√

λ and u = v/R, the inequality
(31) is equivalent to∫

|u|≤1

du

1 + (s̃ + x̃ · u)2
≤ 4π2

(1 + s̃2 + |x̃ |2)1/2
, (s̃, x̃) ∈ R1 × R3. (32)
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To prove (32) we can assume that s̃2 + |x̃ |2 > 1. If |s̃| ≥ 2|x̃ |, then for all |u| ≤ 1,

|s̃ + x̃ · u| ≥ |s̃| − |x̃ | ≥ 1
3 (|s̃| + |x̃ |) which implies∫

|u|≤1

du

1 + (s̃ + x̃ · u)2
≤ 12π

9 + s̃2 + |x̃ |2 <
4π2

(1 + s̃2 + |x̃ |2)1/2
.

If |s̃| < 2|x̃ |, then (1 + s̃2 + |x̃ |2)1/2 ≤ 4|x̃ | and by changing variable we compute∫
|u|≤1

du

1 + (s̃ + x̃ · u)2
≤ π

∫ 1

−1

1

1 + (s̃ + |x̃ | t)2
dt ≤ π2

|x̃ | ≤ 4 π2

(1 + s̃2 + |x̃ |2)1/2
.

This proves the lemma. �

Let

K3 =
{ (

2π

T1
l1,

2π

T2
l2,

2π

T3
l3

) ∣∣∣∣ (l1, l2, l2) ∈ Z3

}
, |T3| = T1T2T3.

Lemma 6. Let φ(s, k) be a real or complex valued function on R1 × K3 satisfying
that s �→ φ(s, k) is measurable on R1 and∑

k∈K3

∫
R1

|φ(s, k)|pds < ∞ ∀ 1 ≤ p ≤ 2.

Let

F[φ](t, x) =
∑
k∈K3

∫
R1

φ(s, k)e−i(st+k·x)ds, (t, x) ∈ R1 × T3.

Then for any 1 < p < 2 and q = p/(p − 1)

‖F[φ]‖Lq (R1×T3) ≤ (
2π |T3|)1/q

(∑
k∈K3

∫
R1

|φ(s, k)|pds

)1/p

. (33)

Proof. (33) is in fact the Hausdorff–Young inequality or a special version of
M.Riesz–Thorin convexity theorem: see Ref. 26, Chap. V, and consider measure
spaces (R1 × K3,M, µ) and (R1 × T3,N , ν) where the σ -algebra M is defined
by E ∈ M ⇐⇒ Ek := {s ∈ R1 | (s, k) ∈ E} is Lebesgue measurable for every
k ∈ K3, and the measure µ is then given by

µ(E) =
∑
k∈K3

∫
R1

1E (s, k)ds, E ∈ M;

while in the second measure space, ν is the usual Lebesgue measure. We thus
need only to check that inequality (33) holds for p = 1 and p = 2. For p = 1
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(i.e. q = ∞), the inequality (33) is obvious, while for p = 2 = q, the equality
sign in (33) holds due to the Parseval identity and Plancherel theorem. �

We next consider the L1-compactness. Recall a criterion of the relative com-
pactness in L1(RN )(see e.g. Ref. 1): Let { fn}∞n=1 be a sequence in L1(RN ). Then
{ fn}∞n=1 is relatively compact in L1(RN ) if and only if { fn}∞n=1 satisfies

sup
n≥1

‖ fn‖L1(RN ) < ∞, sup
n≥1

∫
|z|>R

| fn(z)|dz → 0 (R → ∞),

and

sup
n≥1

‖ fn(· + h) − fn‖L1(RN ) → 0 (|h| → 0).

Lemma 7. Let {Fn}∞n=1 be a sequence in L1(R1 × R3) satisfying that the func-
tions x �→ Fn(t, x) are periodic with the period T = (T1, T2, T3) and for some
0 < T < ∞, supp Fn ⊂ [0, T ] × R3 (∀ n ≥ 1). Suppose further that

sup
n≥1

‖Fn‖L1(R1×T3) < ∞,

sup
n1

‖Fn(· + τ, · + h) − Fn‖L1(R1×T3) → 0 (|τ | + |h| → 0).

Then {Fn}∞n=1 is relatively compact in L1(R1 × T3).

This lemma can be reduced to a special case of the above criterion of the
compactness in L1(R4) by using the following property: Let F(x) be a measurable
and periodic function on R3 with the period T, and let (for instance) ρ(x) =
e−α|x |2 , α > 0. Then∫

R3

|F(x)|ρ(x)dx =
∫

T3

|F(x)|
( ∑

m∈Z3

ρ(x + mT)

)
dx ≤ C

∫
T3

|F(x)|dx

where mT := (m1T1, m2T2, m3T3) and C < ∞ depends only on T and α. Then
using this property to fn(t, x) = Fn(t, x)e−|x |2 it is easily checked that { fn}∞n=1
is relatively compact in L1(R4) and therefore {Fn}∞n=1 is relatively compact in
L1(R1 × T3).

3. AVERAGING COMPACTNESS OF WEAK SOLUTIONS

In our proof of the velocity-averaging compactness of weak solutions we will
use the following functions:

βs,k(t) = t

(1 + s2 + |k|2)δ + t2
, αs,k(t) = 1 − tβs,k(t)
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where δ > 0 is a constant. In our estimates below for averaging compactness we
shall choose 1/2 << δ < 1. Let us list some properties of αs,k, βs,k:

αs,k(s + k · v) + (s + k · v)βs,k(s + k · v) ≡ 1, (34)

0 ≤ αs,k(t) = (1 + s2 + k|2)δ

(1 + s2 + |k|2)δ + t2
≤ 1, (35)

|βs,k(t)| = |t |
(1 + s2 + |k|2)δ + t2

≤ 1

2
(1 + s2 + |k|2)−δ/2, (36)

∫
|v|≤R

αs,k(s + k · v)dv ≤ 4π2 R3 (1 + s2 + |k|2)−(1−δ)/2. (37)

Here the last inequality (37) is due to Lemma 5 with λ = (1 + s2 + |k|2)δ and R1.
Let

β
(1)
s,k(t) = d

dt
βs,k(t).

Then ∣∣∣β(1)
s,k(t)

∣∣∣ = |(1 + s2 + |k|2)δ − t2|
((1 + s2 + |k|2)δ + t2)2

≤ 1

(1 + s2 + |k|2)δ

which gives

|∇v(βs,k(s + k · v))| = |β(1)
s,k(s + k · v)| |k| ≤ (1 + s2 + |k|2)−(δ−1/2).

This together with (36) implies that

sup
v∈R3

{|βs,k(s + k · v)| + |∇v(βs,k(s + k · v))|} ≤ 3

2
(1 + s2 + |k|2)−(δ−1/2).

(38)
For any F ∈ L2(R1 × T3) ∩ L1(R1 × T3), the Fourier transform of F is de-

fined by

F̂(s, k) =
∫

R1×T3

F(t, x)e−i(st+k·x)dxdt.

By Parseval identity and Plancherel theorem we have∑
k∈K3

∫
R1

|F̂(s, k)|2ds = 2π |T3|
∫

R1×T3

|F(t, x)|2dxdt. (39)

Let 〈g〉 be the velocity average function as given in (22), i.e.

〈g〉(t, x) =
∫

R3

g(t, x, v)dv, (t, x) ∈ R1 × T3.
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The Fourier transform of 〈g〉 is then given by

〈g〉̂(s, k) =
∫

R1×T3×R3

g(t, x, v)e−i(st+k·x)dvdxdt. (40)

Introduce

‖F‖Hη(R1×T3) =
(∑

k∈K3

∫
R1

(1 + s2 + |k|2)η|F̂(s, k)|2ds

)1/2

, η > 0,

‖ψ‖1,∞ = sup
v∈R3

{|ψ(v)| + |∇ψ(v)|}, ‖ζ‖1,∞ = sup
t∈R1

{
|ζ (t)| + | d

dt
ζ (t)|

}
.

Our first main result of this paper can be stated as follows:

Theorem 1. Let B be a collision kernel satisfying (6) − (7) and let f (t, x, v)
be a weak solution to Eqs. (1)–(3) with initial datum f0 ∈ L1

2(T3 × R3) satisfying
supt≥0 ‖ f (t)‖L1

2(T3×R3) < ∞. Assume that f satisfy the entropy inequality (15).
Then there exists a constant 0 < η < 1 depending only on γ such that for any
0 < T < ∞, 1 < R < ∞ and any ψ ∈ C1(R3), ζ ∈ C1(R1) with supp ψ ⊂ {v ∈
R3 | |v| ≤ R}, supp ζ ⊂ (0, T ), we have

‖〈 f ζψ〉‖Hη(R1×T3) ≤ C‖ζ‖1,∞‖ψ‖1,∞ (41)

and consequently for all τ ∈ R1, h ∈ R3

‖〈 f ζψ〉(· + τ, · + h) − 〈 f ζψ〉‖L1(R1×T3) ≤ C ‖ζ‖1,∞‖ψ‖1,∞(τ 2 + |h|2)η/2

(42)
where C = (1 + A0)1/2CK0,R,T < ∞ and CK0,R,T depends only on K0, R, T and
on γ, |T3|. Here K0 is any given constant satisfying supt≥0 ‖ f (t)‖L1

2(T3×R3) ≤
K0 < ∞.

Proof. We can assume that ζ (t) �≡ 0, ψ(v) �≡ 0. Also by replacing ζ (t) and ψ(v)
with ζ (t)/‖ζ‖1,∞ and ψ(v)/‖ψ‖1,∞ we can assume that ‖ζ‖1,∞ = ‖ψ‖1,∞ = 1.

In the following we denote by C{∗,∗,∗,...} the positive and finite constants that depend
only on its arguments ∗, ∗, ... and may depend on γ and |T3|. For convenience of
our derivation we extend f (t) on t ∈ R1 as follows:

f (t, x, v) = f0(x, v) for t < 0.

Proof of (41). We will use the functions αs,k(s + k · v), βs,k(s + k · v) introduced
above. In view of identity (34) we consider the following decomposition:

ψ(v) = �s,k(v) + �s,k(v)(s + k · v)
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where

�s,k(v) = ψ(v)αs,k(s + k · v), �s,k(v) = ψ(v)βs,k(s + k · v).

According to (40) this gives

〈 f ζψ〉̂(s, k) =
∫

R1×T3×R3

f (t, x, v)ζ (t)�s,k(v)e−i(st+k·x)dvdxdt

+
∫

R1×T3×R3

f (t, x, v)ζ (t)�s,k(v)(s + k · v)e−i(st+k·x)dvdxdt.

(43)
Applying the weak form (10) with the test function

ϕ(t, x, v) = ζ (t)�s,k(v)e−i(st+k·x)

and noting that ζ (T ) = ζ (0) = 0 we compute with ζ1(t) = d
dt ζ (t)

0 =
∫ T

0

∫
T3×R3

f (t, x, v)ζ1(t)�s,k(v)e−i(st+k·x)dvdxdt

− i
∫ T

0

∫
T3×R3

f (t, x, v)ζ (t)�s,k(v)(s + k · v)e−i(st+k·x)dvdxdt

+ 1

4

∫ T

0

∫
T3×R3

ζ (t)e−i(st+k·x) Q B( f | ��s,k)dvdxdt

and so (using supp ζ ⊂ (0, T ) again)

i
∫

R1×T3×R3

f (t, x, v)ζ (t)�s,k(v)(s + k · v)e−i(st+k·x)dvdxdt

=
∫

R1×T3×R3

f (t, x, v)ζ1(t)�s,k(v)e−i(st+k·x)dvdxdt

+ 1

4

∫
R1×T3×R3

ζ (t)e−i(st+k·x) Q B( f | ��s,k)dvdxdt.

From this we see that the Eq. (43) becomes

〈 f ζψ〉̂(s, k) =
∫

R1×T3×R3

f (t, x, v)ζ (t)�s,k(v)e−i(st+k·x)dvdxdt

− i
∫

R1×T3×R3

f (t, x, v)ζ1(t)�s,k(v)e−i(st+k·x)dvdxdt

− i

4

∫
R1×T3×R3

ζ (t)e−i(st+k·x) Q B( f | ��s,k)dvdxdt. (44)
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Let us denote

�(s, k) = (1 + s2 + |k|2)1/2. (45)

For the sake of integrability we consider, for every 0 < N < ∞,

FN (s, k) = (�(s, k))η 〈 f ζψ〉̂(s, k) 1{|s|≤N } 1{|k|≤N } (46)

where the value of η > 0 (depending only on γ ) will be given later. It is easily
checked that∑

k∈K3

∫
R1

|FN (s, k)|2ds =
∑
|k|≤N

∫
|s|≤N

(�(s, k))2η|〈 f ζψ〉̂(s, k)|2ds < ∞,

lim
N→∞

∑
k∈K3

∫
R1

|FN (s, k)|2ds =
∑
k∈K3

∫
R1

(�(s, k))2η|〈 f ζψ〉̂(s, k)|2ds.

Therefore to prove (41) it suffices to prove that∑
k∈K3

∫
R1

|FN (s, k)|2ds ≤ (1 + A0)CK0,R,T ∀ 0 < N < ∞. (47)

Let

f̂ ζ (s, k)v =
∫

R1×T3

f (t, x, v)ζ (t)e−i(st+k·x)dtdx,

φ(v,v∗,v′,v′∗)(s, k) = ��s,k(v, v∗, v′, v′
∗) (�(s, k))η FN (s, k).

We compute using (46) and (44)∑
k∈K3

∫
R1

|FN (s, k)|2ds =
∑
k∈K3

∫
R1

(�(s, k))η FN (s, k)〈 f ζψ〉̂(s, k)ds

=
∑
k∈K3

∫
R1

(�(s, k))η FN (s, k)

[∫
R3

�s,k(v) f̂ ζ (s, k)vdv

]
ds

− i
∑
k∈K3

∫
R1

(�(s, k))η FN (s, k)

[∫
R3

�s,k(v) f̂ ζ1(s, k)vdv

]
ds

− i

4

∫
R1×T3×R6×S2

B(v − v∗, σ )ζ (t)�F( f )F[φ(v,v∗,v′,v′∗)](t, x)dµ

:= I1 + I2 + I3.

Here and below, dµ = dσdv∗dvdxdt,

F
[
φ(v,v∗,v′,v′∗)

]
(t, x) =

∑
k∈K3

∫
R1

φ(v,v∗,v′,v′∗)(s, k)e−i(st+k·x)ds.
�
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Estimates of I1 and I2

By Cauchy–Schwarz inequality and recalling that |ψ(v)| ≤ 1{|v|≤R},
|αs,k(s + k · v)| ≤ 1 (see (35)) and (37) we have∫

R3

|�s,k(v)| ∣∣ f̂ ζ (s, k)v
∣∣ dv

≤
(∫

R3

|ψ(v)|2|αs,k(s + k · v)|2dv

)1/2 (∫
R3

| f̂ ζ (s, k)v|2dv

)1/2

≤ CR(�(s, k))−(1−δ)/2

(∫
R3

| f̂ ζ (s, k)v|2dv

)1/2

.

If we choose 0 < η ≤ (1 − δ)/2, then

|I1| ≤ CR

∑
k∈K3

∫
R1

(�(s, k))η|FN (s, k)|(�(s, k))−(1−δ)/2

(∫
R3

| f̂ ζ (s, k)v|2dv

)1/2

ds

≤ CR

(∑
k∈K3

∫
R1

|FN (s, k)|2ds

)1/2 (∑
k∈K3

∫
R1

∫
R3

| f̂ ζ (s, k)v|2dvds

)1/2

.

Since, by identity (39),∑
k∈K3

∫
R1

∫
R3

| f̂ ζ (s, k)v|2dvds = 2π |T3|
∫

R3

∫
R1×T3

|ζ (t) f (t, x, v)|2dxdtdv

≤ 2π |T3|
∫ T

0
dt

∫
T3×R3

f (t, x, v)dvdx ≤ 2π |T3|K0T

it follows that

|I1| ≤ CK0,R,T

(∑
k∈K3

∫
R1

|FN (s, k)|2ds

)1/2

.

Similarly we use |�s,k(v)| = |ψ(v)||βs,k(s + k · v)| ≤ 1
2 |ψ(v)|(�(s, k))−δ (see

(36)) and choose η satisfying also 0 < η ≤ δ. Then

|I2| ≤ CR

∑
k∈K3

∫
R1

(�(s, k))η|FN (s, k)|(�(s, k))−δ

(∫
R3

| f̂ ζ1(s, k)v|2dv

)1/2

ds

≤
(∑

k∈K3

∫
R1

|FN (s, k)|2ds

)1/2 (∑
k∈K3

∫
R1

∫
R3

| f̂ ζ1(s, k)v|2dvds

)1/2

≤ CK0,R,T

(∑
k∈K3

∫
R1

|FN (s, k)|2ds

)1/2

.
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Estimate of I3

As shown in the Introduction we have (write �F( f ) = �2( f )�1( f ))

|I3| ≤ 1

4

∫
R1×T3×R6×S2

B |ζ (t)||�F( f )| ∣∣F[φ(v,v∗,v′,v′∗)](t, x)
∣∣ dµ

≤
(∫

R1×T3×R6×S2

B |ζ (t)||�2( f )|2dµ

)1/2

×
(∫

R1×T3×R6×S2

B |ζ (t)||�1( f )|2|F[φ(v,v∗,v′,v′∗)]|2dµ

)1/2

and, recalling that suppζ ⊂ (0, T ), |ζ (t)| ≤ 1 and using (20), (15) and (13),∫
R1×T3×R6×S2

B |ζ (t)||�2( f )|2dµ ≤
∫ T

0
dt

∫
T3

D( f )(t, x)dx ≤ CK0 .

Therefore we obtain

|I3| ≤ CK0

(∫
R1×T3×R6×S2

B |ζ (t)||�1( f )|2|F[φ(v,v∗,v′,v′∗)]|2dµ

)1/2

. (48)

Since supp ψ ⊂ {v ∈ R3 | |v| ≤ R}, this gives (by definition of φ(v,v∗,v′,v′∗)(s, k))

|F[φ(v,v∗,v′,v′∗)](t, x)|2

≤ |F [
φ(v,v∗,v′,v′∗)

]
(t, x)|2 (

1{|v|≤R} + 1{|v∗|≤R} + 1{|v′|≤R} + 1{|v′∗|≤R}
)
.

Again by definition of φ(v,v∗,v′,v′∗)(s, k), the function |F[φ(v,v∗,v′,v′∗)](t, x)| is invari-
ant under the changes v ↔ v∗ and (v, v∗) ↔ (v′, v′

∗). Thus∫
R1×T3×R6×S2

B |ζ (t)||�1( f )|2|F[φ(v,v∗,v′,v′∗)]|2dµ

≤ 4
∫

R1×T3×R6×S2

B 1{|v|≤R}|ζ (t)||�1( f )|2|F[φ(v,v∗,v′,v′∗)]|2dµ.

Next let

λ = λ(|v − v∗|) =
{ |γ | − 2, |v − v∗| ≤ 1;

|γ | + 2, |v − v∗| > 1.
(49)

and let 2 < p < ∞, q = p/(p − 1). Here and below p dependsonly on |γ |. We
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then compute using Hölder inequality∫
R1×T3×R6×S2

B 1{|v|≤R}|ζ (t)||�1( f )|2|F[φ(v,v∗,v′,v′∗)]|2dµ

≤
(∫

R1×T3×R6×S2

B 1{|v|≤R}|v − v∗|λ(sin θ )2|ζ (t)||�1( f )|2pdµ

)1/p

×
( ∫

R1×T3×R6×S2

B 1{|v|≤R}|v − v∗|−λq/p(sin θ )−2q/p|ζ (t)||F[φ(v,v∗,v′,v′∗)]|2q dµ

)1/q

.

(50)

For the first factor we use inequality |�1( f )|2p ≤ 22p−1( f f∗ + f ′ f ′
∗) (because

0 ≤ f ≤ 1 ) to get

∫
R1×T3×R6×S2

B 1{|v|≤R}|v − v∗|λ sin2 θ |ζ (t)||�1( f )|2pdµ

≤ 22p−1
∫ T

0

∫
T3×R6×S2

B 1{|v|≤R}1{|v−v∗|≤1}|v − v∗||γ |−2 sin2 θ ( f f∗ + f ′ f ′
∗)dµ

+ 22p−1
∫ T

0

∫
T3×R6×S2

B 1{|v|≤R}1{|v−v∗|>1}|v − v∗||γ |+2 sin2 θ ( f f∗ + f ′ f ′
∗)dµ

:= 22p−1 J|γ |−2 + 22p−1 J|γ |+2.

For the J|γ |−2 term we use Lemma 2 to obtain

J|γ |−2 ≤ 2A0

∫ T

0
dt

∫
T3×R3×R3

f (t, x, v) f (t, x, v∗)

|v − v∗|2 dvdv∗dx

≤ C0 A0

∫ T

0
dt

∫
T3×R3

f (t, x, v)|v|dvdx ≤ C0 A0K0T .

For the J|γ |+2 term we compute

J|γ |+2 ≤ J (1)
|γ |+2 + J (2)

|γ |+2

with

J (1)
|γ |+2 :=

∫ T

0

∫
T3×R6×S2

B 1|v|≤R}|v − v∗||γ |+2 sin2 θ f f∗dµ

≤ A0C0 R5
∫ T

0
dt

∫
T3×R3

f∗(1 + |v∗|2)dv∗dx ≤ C0 A0 R5K0T
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and, using Lemma 4,

J (2)
|γ |+2 :=

∫ T

0

∫
T3×R6×S2

B 1|v|≤R}|v − v∗||γ |+2 sin2 θ f ′ f ′
∗dµ

=
∫ T

0

∫
T3

∫
|v|≤R

(∫
R3×S2

B sin2 θ |v − v∗||γ |+2 f ′ f ′
∗dσdv∗

)
dvdxdt

≤ C0 A0

∫ T

0

∫
T3

∫
|v|≤R

(1 + |v|2)

(∫
R3

f∗ (1 + |v∗|2)dv∗

)
dvdxdt

≤ A0C0 R5
∫ T

0
dt

∫
T3×R3

f (t, x, v∗)(1 + |v∗|2)dv∗dx ≤ C0 A0 R5K0T .

Summarizing we obtain that the first factor in (50) is bounded:(∫
R1×T3×R6×S2

B 1{|v|≤R}|v − v∗|λ sin2 θ |ζ (t)||�1( f )|2pdµ

)1/p

≤ A1/p
0 CK0,R,T .

(51)
To estimate the second factor in (50), let

p1 = 2q

2q − 1

(
= 2p

p + 1
< 2

)
.

Then by the Hausdorff–Young inequality (Lemma 6) we have

∫
R1×T3

|F[φ(v,v∗,v′,v′∗)](t, x)|2q dtdx ≤ 2π |T3|
(∑

k∈K3

∫
R1

|φ(v,v∗,v′,v′∗)(s, k)|p1 ds

)2q/p1

.

Hence by |ζ (t)| ≤ 1 we get∫
R1×T3×R6×S2

B 1{|v|≤R}|v − v∗|−λq/p(sin θ )−2q/p|ζ (t)||F[φ(v,v∗,v′,v′∗)]|2qdµ

≤
∫

R3×R3×S2

B 1{|v|≤R}|v − v∗|−λq/p(sin θ )−2q/p

×
(∫

R1×T3

|F[φ(v,v∗,v′,v′∗)](t, x)|2qdtdx

)
dσdv∗dv

≤ 2π |T3|
∫

R3×R3×S2

B 1{|v|≤R}|v − v∗|−λq/p(sin θ )−2q/p

×
(∑

k∈K3

∫
R1

|φ(v,v∗,v′,v′∗)(s, k)|p1 ds

)2q/p1

dσdv∗dv. (52)
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Further estimate: By definition of φ(v,v∗,v′,v′∗)(s, k) and �s,k(v), and applying (38)
and Lemma 1 we compute

|φ(v,v∗,v′,v′∗)(s, k)| ≤ C0|v − v∗| sin θ (�(s, k))−(2δ−1−η)|FN (s, k)|.
This gives (because(sin θ )−2q/p(sin θ )2q = sin2 θ )

(52) ≤ 2π |T3|C2q
0

(∫
R3×R3×S2

B 1{|v|≤R}|v − v∗|−q(λ/p−2) sin2 θdσdv∗dv

)

×
(∑

k∈K3

∫
R1

(�(s, k))−p1(2δ−1−η)|FN (s, k)|p1 ds

)2q/p1

. (53)

We first estimate the second integral in the right hand side of (53). Let

p2 = 2

2 − p1
(= p + 1), q2 = p2

p2 − 1

(
= 2

p1

)
.

Then p1 p2 = 2p, p1q2 = 2. So by Hölder inequality with index (p2, q2) we get(∑
k∈K3

∫
R1

(�(s, k))−p1(2δ−1−η)|FN (s, k)|p1 ds

)2q/p1

≤
(∑

k∈K3

∫
R1

(�(s, k))−2p(2δ−1−η)ds

)q/p (∑
k∈K3

∫
R1

|FN (s, k)|2ds

)q

.

Now we choose 2 < p < ∞ that depends only γ , satisfying

η1 := q

( |γ | − 2

p
− 2

)
+ |γ | < 3, η2 := q

( |γ | + 2

p
− 2

)
+ |γ | > 3

which is equivalent to

max

{
2,

1

5 − |γ |
}

< p <
5

5 − |γ | .

We then choose δ > 0, η > 0 such that 1/2 + 1/p < δ < 1 and

0 < η < min

{
2δ − 1 − 2

p
,

1 − δ

2
, δ

}
.

Then the above estimates hold for this number η. And we have

β := 2p (2δ − 1 − η) > 4

which implies (by definition of � in (45)) that∑
k∈K3

∫
R1

(�(s, k))−βds ≤ Cβ

∫
R4

(1 + |y|2)−β/2dy < ∞.



542 Lu

Next we compute the first integral in the right hand side of (53): By definition of
λ (see (49)) and η1, η2 we have∫

R3×R3×S2

B 1{|v|≤R}|v − v∗|−q(λ/p−2) sin2 θdσdv∗dv

=
∫

R3×R3×S2

B 1{|v|≤R}1{|v−v∗|≤1}|v − v∗|−η1+|γ | sin2 θdσdv∗dv

+
∫

R3×R3×S2

B 1{|v|≤R}1{|v−v∗|>1}|v − v∗|−η2+|γ | sin2 θdσdv∗dv

≤ A0

∫
|v|≤R

∫
R3

(
1{|v−v∗|≤1}|v − v∗|−η1 + 1{|v−v∗|>1}|v − v∗|−η2

)
dv∗dv

≤ A0C0 R3

(∫
|z|≤1

|z|−η1 dz +
∫

|z|>1
|z|−η2 dz

)
= A0CR < ∞.

Summarizing above we get

(53) ≤ A0CR

(∑
k∈K3

∫
R1

|FN (s, k)|2ds

)q

. (54)

Combining (52)–(54) we obtain the following estimate for the second factor in
(50):

( ∫
R1×T3×R6×S2

B 1{|v|≤R}|v − v∗|−λq/p(sin θ)−2q/p|ζ (t)||F [φ(v,v∗,v′,v′∗)]|2qdµ

)1/q

≤ A1/q
0 CK0,R,T

∑
k∈K3

∫
R1

|FN (s, k)|2ds.

This together with (48), (50), and (51) gives

|I3| ≤ A1/2
0 CK0,R,T

(∑
k∈K3

∫
R1

|FN (s, k)|2ds

)1/2

.

Summarizing the above estimates for Ii (i = 1, 2, 3) we obtain for all 0 <

N < ∞
∑
k∈K3

∫
R1

|FN (s, k)|2ds ≤ (1 + A1/2
0 )CK0,R,T

(∑
k∈K3

∫
R1

|FN (s, k)|2ds

)1/2

which implies (47) and (41) is proven.



Boltzmann Equation for Fermi–Dirac Particles 543

Proof of (42). Recalling our assumption on ζ, ψ and supp ζ ⊂ (0, T ) we have

‖〈 f ζψ〉‖L1(R1×T3) ≤ T sup
t0

‖ f (t)‖L1(T3×R3) ≤ TK0.

Therefore to prove (42) we can assume that |τ | ≤ 1. This implies that the functions
t �→ 〈 f ζψ〉(t + τ, x + h) are supported on [−1, T + 1]. By Cauchy-Schwarz
inequality we then obtain

‖〈 f ζψ〉(· + τ, · + h) − 〈 f ζψ〉‖L1(R1×T3)

≤
√

(T + 2)|T3| ‖〈 f ζψ〉(· + τ, · + h) − 〈 f ζψ〉‖L2(R1×T3).

By 0 < η < 1 it is easy to show that

|ei(sτ+k·h) − 1|2 ≤ 4(s2 + |k|2)η(τ 2 + |h|2)η

from which we deduce (using (39))

‖〈 f ζψ〉(· + τ, · + h) − 〈 f ζψ〉‖2
L2(R1×R3)

= 1

2π |T3|
∑

k

∫
R1

|〈 f ζψ〉̂(s, k)|2|ei(sτ+k·h) − 1|2ds

≤ 4

2π |T3| ‖〈 f ζψ〉‖2
Hη(T3×R3)(τ

2 + |h|2)η ≤ C2(τ 2 + |h|2)η.

This proves (42) and the proof of the theorem is complete. �

Now applying the above estimate (42) we can prove the following averaging
compactness of weak (approximate) solutions of Eqs. (1)–(3).

Theorem 2. Let B, Bn be collision kernels with B satisfying (6)–(7) and 0 ≤
Bn ≤ B (n = 1, 2, ...). Let f n be weak solutions of Eqs. (1)–(3) with the kernel Bn

and the initial data f n|t=0 = f n
0 satisfying sup

n≥1
sup
t≥0

‖ f n(t)‖L1
2
< ∞. Assume also

that f n satisfy the entropy inequality (15) (corresponding to Bn). Then for any
T ∈ (0,∞) and any � ∈ L∞([0, T ] × T3 × R3), the set {〈 f n�〉 | n = 1, 2, 3, ...}
is relatively compact in L1([0, T ] × T3).

Proof. Let K0 = sup
n≥1

sup
t≥0

‖ f n(t)‖L1
2

. As did before we define f n(t, x, v) =
f n
0 (x, v) for t < 0. Let 0 < T < ∞ and � ∈ L∞([0, T ] × T3 × R3) be given.

We extend � on R1 × R3 × R3 in the way that the extension � is peri-
odic in x with the period T and �(t, ·, ·) = 0 for t ∈ R1 \ [0, T ]. This im-
plies that supp〈 f n�〉 ⊂ [0, T ] × R3 and supn≥1 ‖〈 f n�〉‖L1(R1×T3) ≤ ‖�‖∞TK0

where ‖�‖∞ = ‖�‖L∞(R1×R3×R3). Therefore, by Lemma 7, to prove the relative
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compactness of {〈 f n�〉}∞n=1 in L1(R1 × T3) we need only to prove that

lim
|τ |+|h|→0

sup
n≥1

‖〈 f n�〉(· + τ, · + h) − 〈 f n�〉‖L1(R1×T3) = 0. (55)

For any 1 < R < ∞, the L1
2-bounds of { f n(t)}∞n=1 implies

sup
n≥1

∫
R1×T3×R3

f n(t, x, v)|�(t, x, v)|1{|v|>R}dvdxdt ≤ ‖�‖∞TK0
1

R2
.

Thus for notation convenience we can assume further that � has been truncated
in the v-variable: �(·, ·, v) = 0 for all |v| > R, so that � ∈ L1(R1 × T3 × R3).

Now given any 0 < ε < min{1, T/4}. Choose a function ζε ∈ C∞
c (R1) sat-

isfying supp ζε ⊂ (0, T ), 0 ≤ ζε(t) ≤ 1 on R1, and ζε(t) = 1 ∀ t ∈ [2ε, T − 2ε].
Also choose a function χ ∈ C∞

c (R3) satisfying suppχ ⊂ {z ∈ R3 | |z| ≤ 1}, 0 ≤
χ (z) ≤ 1 on z ∈ R3, and

∫
R3 χ (z)dz = 1. Let χε(z) = ε−3χ (z/ε),

�ε(t, x, v) = ζε(t)
∫

R3

�(t, x, z)χε(v − z)dz = ζε(t)
∫

R3

�(t, x, v − εz)χ (z)dz.

It is obvious that �ε is still periodic in x with the period T. We compute

‖〈 f n�〉(· + τ, · + h) − 〈 f n�〉‖L1(R1×T3)

≤ 2‖〈 f n(� − �ε)〉‖L1(R1×T3) + ‖〈 f n�ε〉(· + τ, · + h) − 〈 f n�ε〉‖L1(R1×T3).

(56)

By �(t, ·, ·) = �ε(t, ·, ·) = 0 for all t ∈ R1 \ [0, T ] we have

‖〈 f n(� − �ε)〉‖L1(R1×T3) ≤ ‖ f n(� − �ε)‖L1([0,T ]×T3×R3).

Since

|�(t, x, v) − �ε(t, x, v)|

≤ ‖�‖∞(1 − ζε(t)) +
∫

|z|≤1
|�(t, x, v) − �(t, x, v − εz)|χ (z)dz,

and supt≥0 ‖ f n(t)‖L1
2
≤ K0, 0 ≤ f n ≤ 1, it follows that

‖ f n(� − �ε)‖L1([0,T ]×T3×R3)

≤ ‖�‖∞K0

∫ T

0
(1 − ζε(t))dt + �� (ε) ≤ 4‖�‖∞K0ε + ��(ε) (57)

where

�� (ε) = sup
|h|≤ε

‖� − �(·, ·, · + h)‖L1(R1×T3×R3).
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Since � ∈ L1(R1 × T3 × R3), this implies that ��(ε) → 0 as ε → 0+. On the
other hand by writing χε,z(v) = χε(v − z) we have

〈 f n�ε〉(t, x) =
∫

R3

〈 f nζεχε,z〉(t, x)�(t, x, z)dz

from which we deduce

|〈 f n�ε〉(t + τ, x + h) − 〈 f n�ε〉(t, x)|

≤
∫

R3

|〈 f nζεχε,z〉(t + τ, x + h)||�(t + τ, x + h, z) − �(t, x, z)|dz

+
∫

R3

|〈 f nζεχε,z〉(t + τ, x + h) − 〈 f nζεχε,z〉(t, x)||�(t, x, z)|dz.

Using 0 ≤ f n ≤ 1 again gives |〈 f nζεχε,z〉(t + τ, x + h)| ≤ ‖χε‖L1(R3) = 1. This
together with |�(t, x, z)| ≤ ‖�‖∞1{|z|≤R} imply that

‖〈 f n�ε〉(· + τ, · + h) − 〈 f n�ε〉‖L1(R1×T3)

≤ ‖�(· + τ, · + h, ·) − �‖L1(R1×T3×R3)

+‖�‖∞
∫

|z|≤R
‖〈 f nζεχε,z〉(· + τ, · + h) − 〈 f nζεχε,z〉‖L1(R1×T3)dz.

By � ∈ L1(R1 × T3 × R3) again, we have

��(τ, h) := ‖�(· + τ, · + h, ·) − �‖L1(R1×T3×R3) → 0 (|τ | + |h| → 0).

Also, since for any z ∈ R3 satisfying |z| ≤ R, the function v �→ χε,z(v) belongs
to C∞

c (R3) with supp χε,z ⊂ {v ∈ R3 | |v| ≤ ε + R} ⊂ {v ∈ R3 | |v| ≤ 2R} and
‖χε,z‖1,∞ = ‖χε‖1,∞, it follows from (42) that

‖〈 f nζεχε,z〉(· + τ, · + h) − 〈 f nζεχε,z〉‖L1(R1×T3)

≤ C‖ζε‖1,∞‖χε‖1,∞(|τ |2 + |h|2)η/2 ∀ |z| ≤ R.

Here and below C = (1 + A0)1/2CK0,2R,T denotes the constant as given in Theo-
rem 1, i.e. CK0,2R,T depends only on K0, R, T and on γ and |T3|. Thus∫

|z|≤R
‖〈 f nζεχε,z〉(· + τ, · + h) − 〈 f nζεχε,z〉‖L1(R1×T3)dz

≤ C‖ζε‖1,∞‖χε‖1,∞(|τ |2 + |h|2)η/2

and so we obtain for all n ≥ 1,

‖〈 f n�ε〉(· + τ, · + h) − 〈 f n�ε〉‖L1(R1×T3)

≤ ��(τ, h) + C‖�‖∞‖ζε‖1,∞‖χε‖1,∞(|τ |2 + |h|2)η/2. (58)
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Summarizing (56)–(58) we get

sup
n≥1

‖ |〈 f n�〉(· + τ, · + h) − 〈 f n�〉‖L1(R1×T3)

≤ 8‖�‖∞K0 ε + 2�� (ε) + ��(τ, h) + C‖�‖∞‖ζε‖1,∞‖χε‖1,∞(|τ |2 + |h|2)η/2.

This gives

lim sup
|τ |+|h|→0

sup
n≥1

‖〈 f n�〉(· + τ, · + h) − 〈 f n�〉‖L1(R1×T3) ≤ 8‖�‖∞K0 ε + 2�� (ε).

Letting ε → 0 leads to (55). This completes the proof. �
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